Quad-layer: Layered Quadrilateral Meshing of Narrow Two-dimensional Domains by Bubble Packing and Chordal Axis Transformation
نویسندگان
چکیده
This paper presents a computational method for quadrilateral meshing of a thin, or narrow, two-dimensional domain for finite element analysis. The proposed method creates a well-shaped single-layered, multi-layered, or partially multi-layered quadrilateral mesh. Element sizes can be uniform or graded. A high quality, layered quadrilateral mesh is often required for finite element analysis of a narrow two-dimensional domain with a large deformation such as in the analysis of rubber deformation or sheet metal forming. Fully automated quadrilateral meshing is performed in two stages: (1) extraction of the skeleton of a given domain by discrete chordal axis transformation, and (2) discretization of the chordal axis into a set of line segments and conversion of each of the line segments to a single quadrilateral element or multiple layers of quadrilateral elements. In each step a physically-based computational method called bubble packing is applied to discretize a curve into a set of line segments of specified sizes. Experiments show that the accuracy of a large-deformation FEM analysis can be significantly improved by using a well-shaped quadrilateral mesh created by the proposed method.
منابع مشابه
Hex-Layer: Layered All-Hex Mesh Generation on Thin Section Solids via Chordal Surface Transformation
This paper proposes chordal surface transform for representation and discretization of thin section solids, such as automobile bodies, plastic injection mold components and sheet metal parts. A multiple-layered all-hex mesh with a high aspect ratio is a typical requirement for mold flow simulation of thin section objects. The chordal surface transform reduces the problem of 3D hex meshing to 2D...
متن کاملLayTracks: a new approach to automated geometry adaptive quadrilateral mesh generation using medial axis transform
A new mesh generation algorithm called ‘LayTracks’, to automatically generate an all quad mesh that is adapted to the variation of geometric feature size in the domain is described. LayTracks combines the merits of two popular direct techniques for quadrilateral mesh generation—quad meshing by decomposition and advancing front quad meshing. While the MAT has been used for the domain decompositi...
متن کاملQuadrilateral Meshing with Directionality Control through the Packing of Square Cells
This paper proposes a computational method for fully automated quadrilateral meshing. Unlike previous methods, this new scheme can create a quadrilateral mesh whose directionality is precisely controlled. Given as input: (1) a 2D geometric domain, (2) a desired node spacing distribution as a scalar function deened over the domain, and (3) a desired mesh directionality as a vector eld deened ove...
متن کاملAn Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory
A generalization of vector fields, referred to as N -direction fields or cross fields when N = 4, has been recently introduced and studied for geometry processing, with applications in quadrilateral (quad) meshing, texture mapping, and parameterization. We make the observation that cross field design for two-dimensional quad meshing is related to the well-known GinzburgLandau problem from mathe...
متن کاملApplication of Single Objective Genetic Algorithm to Optimize Heat Transfer Enhancement from a Flat Plate
The optimal shape of a two dimensional turbulator above an isothermal flat plate is found by using numerical simulation. The turbulent boundary layer over the flat plate was disrupted at various situations by inserting a quadrilateral bar where the boundary layer thickness kept more than three times greater than the insert\'s height. As a result, the overall heat transfer coefficient of the wal...
متن کامل